Elementary Statistics

Study Guide 20

Due Date: \qquad

Name: \qquad
Class: \qquad
Score: \qquad

Your work must be very similar to my notes, lectures, or videos.
Be Neat, Organized, and No Work \Leftrightarrow No Points

1. Consider the data $2,4,6,8,10,12$, and 14. Store them in L_{1}, and then
(a) (2 points) find μ.
(a) \qquad
(b) (2 points) find σ.
(b)
(c) (3 points) find σ^{2}.
(c)
(d) (2 points) Take samples of size 2 with replacement from this population, list all your samples in the table below:

2,2	2,4	2,6	2,8	2,10	2,12	
4,2	4,4					
6,2						
8,2						
10,2						

(e) (2 points) Now find the mean of each sample, and place all the sample means in the table below:

2	3	4	5	6	7	
3	4					
4						

(f) (3 points) Complete the following probability distribution table for all the sample means: Write $P(\bar{x})$, in fractions(do not reduce).

\bar{x}	$P(\bar{x})$	\bar{x}	$P(\bar{x})$
$\mathbf{1}$	$\frac{0}{49}$		
$\mathbf{2}$	$\frac{1}{49}$		
$\mathbf{3}$	$\frac{2}{49}$		
$\mathbf{4}$			

(g) (6 points) Draw the probability distribution histogram using \bar{x} and $p(\bar{x})$ superimposed with a bell curve. Clearly label and mark your graph.

Now enter all the sample means \bar{x} in L_{2}, and corresponding probabilities $P(\bar{x})$ in L_{3}.
(h) (2 points) find $\mu_{\bar{x}}$.
(h) \qquad
(i) (2 points) find $\sigma_{\bar{x}}$.
(i) \qquad
(j) (3 points) find $\sigma_{\bar{x}}^{2}$.
(j) \qquad
2. With a sample size $n=16$ of the normally distributed population with the mean of $\mu=6500$ and standard deviation of $\sigma=275$,
(a) (2 points) find $\mu_{\bar{x}}$.
(a)
(b) (3 points) find $\sigma_{\bar{x}}$.
(b)
3. With a sample size $n=25$ of the normally distributed population with the mean of $\mu=125$ and standard deviation of $\sigma=10$,
(a) (2 points) find $\mu_{\bar{x}}$.
(a) \qquad
(b) (3 points) find $\sigma_{\bar{x}}$.
(b)
4. The heights of a certain breed of dogs has a normal distribution with a mean of 28 inches and a standard deviation of 4 inches. If we randomly select 64 of these dogs, what is probability that the mean height of 64 dogs is
(a) (3 points) less than 27 inches?
(a)
(b) ($\mathbf{3}$ points) greater than 28.5 inches?
(b)
5. The average life of a certain blender is 4.5 years with a standard deviation of 1.25 years. Assuming that the lives of these blenders follow approximately a normal distribution, find
(a) (3 points) the probability that the mean life of a random sample of 8 such blenders fall between 4 and 6 years.
(a)
(b) (4 points) the value of \bar{x} that separates the top 15% from the rest for a random sample of 8 such blenders. Round your answer to one decimal place.
(b)

