Elementary Statistics	Name:
Study Guide 20	Class:
Due Date:	Score:

Your work must be very similar to my notes, lectures, or videos.

Be Neat, Organized, and No Work \Leftrightarrow No Points

- 1. Consider the data 2, 4, 6, 8, 10, 12, and 14. Store them in L_1 , and then (a) (2 points) find μ .
 - (b) (2 points) find σ .
 - (c) (3 points) find σ^2 .

(c) _____

(b) _____

(a) _____

(d) (2 points) Take samples of size 2 with replacement from this population, list all your samples in the table below:

2, 2	2, 4	2, 6	2, 8	2,10	2, 12	
4,2	4, 4					
6,2						
8,2						
10,2						

2	3	4	5	6	7	
3	4					
4						

(e) (2 points) Now find the mean of each sample, and place all the sample means in the table below:

(f) (3 points) Complete the following probability distribution table for all the sample means: Write $P(\overline{x})$, in fractions(do not reduce).

\overline{x}	$P(\overline{x})$	\overline{x}	$P(\overline{x})$	\overline{x}	$P(\overline{x})$
1	$\frac{0}{49}$				
2	$\frac{1}{49}$				
3	$\frac{2}{49}$				
4					
				15	$\frac{0}{49}$

(g) (6 points) Draw the probability distribution histogram using \bar{x} and $p(\bar{x})$ superimposed with a bell curve. Clearly label and mark your graph.

Now enter all the sample means \overline{x} in L_2 , and corresponding probabilities $P(\overline{x})$ in L_3 .

- (h) (2 points) find $\mu_{\overline{x}}$.
- (i) (2 points) find $\sigma_{\overline{x}}$.
- (j) (3 points) find $\sigma_{\overline{x}}^2$.

(i) _____

(h) _____

(j) _____

- 2. With a sample size n = 16 of the normally distributed population with the mean of $\mu = 6500$ and standard deviation of $\sigma = 275$,
 - (a) (2 points) find $\mu_{\overline{x}}$.
 - (b) (3 points) find $\sigma_{\overline{x}}$.

(a) _____

- 3. With a sample size n = 25 of the normally distributed population with the mean of $\mu = 125$ and standard deviation of $\sigma = 10$,
 - (a) (2 points) find $\mu_{\overline{x}}$.
 - (b) (3 points) find $\sigma_{\overline{x}}$.
- 4. The heights of a certain breed of dogs has a normal distribution with a mean of 28 inches and a standard deviation of 4 inches. If we randomly select 64 of these dogs, what is probability that the mean height of 64 dogs is
 - (a) (3 points) less than 27 inches?

(a) _____

(b) _____

(b) (3 points) greater than 28.5 inches?

(b) _____

(a) _____

- 5. The average life of a certain blender is 4.5 years with a standard deviation of 1.25 years. Assuming that the lives of these blenders follow approximately a normal distribution, find
 - (a) (3 points) the probability that the mean life of a random sample of 8 such blenders fall between 4 and 6 years.

(b) (4 points) the value of \bar{x} that separates the top 15% from the rest for a random sample of 8 such blenders. Round your answer to one decimal place.

(b) _____